Adaptive control of an autonomous underwater vehicle: experimental results on ODIN
نویسندگان
چکیده
This paper presents a six-degrees-of-freedom controller for autonomous underwater vehicles. The control algorithm is adaptive in the dynamic parameters that are poorly known and time-varying in the underwater environment. Moreover, the proposed control law adopts quaternions to represent attitude errors, and thus avoids representation singularities that occur when using instead Euler angles description of the orientation. The adaptive controller has been successfully implemented and experimentally validated on omni-directional intelligent navigator (ODIN), an autonomous underwater vehicle that has been designed and built at the University of Hawaii. The experimental results demonstrate the good performance of the proposed controller within the constraints of the sensory system.
منابع مشابه
Adaptive Robust Control for Trajectory Tracking of Autonomous underwater Vehicles on Horizontal Plane
This manuscript addresses trajectory tracking problem of autonomous underwater vehicles (AUVs) on the horizontal plane. Adaptive sliding mode control is employed in order to achieve a robust behavior against some uncertainty and ocean current disturbances, assuming that disturbance and its derivative are bounded by unknown boundary levels. The proposed approach is based on a dual layer adaptive...
متن کاملAn Autonomous Underwater Vehicle Control with a Non-regressor Based Algorithm
The control of autonomous underwater robotic vehicles includes many challenges. The highly nonlinear, timevarying dynamic behavior of the robot continually changes the parameters of the system model. The uncertainties in hydrodynamic coefficient make system identification difficult. Disturbances acting on the robot, such as ocean currents, continually affect the system. This paper presents a no...
متن کاملDesign and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter
This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...
متن کاملDesign of Robust Finite-Time Nonlinear Controllers for a 6-DOF Autonomous Underwater Vehicle for Path Tracking Objective
In this paper, kinematic and dynamic equations of a 6-DOF (Degrees Of Freedom) autonomous underwater vehicle (6-DOF AUV) are introduced and described completely. By developing the nonsingular terminal sliding mode control method, three separate groups of control inputs are proposed for the autonomous underwater vehicle subjected to uncertainties including parametric uncertainties, unmodeled dyn...
متن کاملIdentification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model
In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...
متن کامل